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Abstract. We study various models of independent particles hopping between energy ‘traps’
with a density of energy barriersρ(E), on ad-dimensional lattice or on a fully connected lattice.
If ρ(E) decays exponentially, a true dynamical phase transition between a high-temperature
‘liquid’ phase and a low-temperature ‘aging’ phase occurs. More generally, however, one
expects that for a large class ofρ(E), ‘interrupted’ aging effects appear at low enough
temperatures, with an ergodic time growing faster than exponentially. The relaxation functions
exhibit a characteristic shoulder, which can be fitted as stretched exponentials. A simple way
of introducing interactions between the particles leads to a modified model with an effective
diffusion constant in energy space, which we discuss in detail.

1. Introduction

Many very different glass formers exhibit surprisingly similar properties. For example, a
common experimental feature is the ‘shouldering’ of the relaxation laws as the temperature
is decreased [1, 2]. More precisely, the relaxation of the density fluctuations evolves
from a simple Debye exponential at high temperatures (liquid) to a two-step process at
lower temperature, where the correlation function first decays rather quickly to a ‘plateau’
(β relaxation), and then departs from this plateau value on a much longer time scaleτ(T ).
This relaxation timeτ(T ) grows extremely fast as the temperature is decreased, in any
case faster than exp(1/T ). A very successful description of this divergence is the Vogel–
Fulcher law: 00τ(T ) ∼ e1/(T −T0), where0−1

0 is a microscopic time scale [3]. However,
other functional forms, such as00τ(T ) ∼ e(1/T )2

, give reasonable fits of the data [4, 5].
When τ(T ) becomes of the order of the typical experimental time scales (say, a day), the
system is conventionally called a ‘glass’, which is thus inherently out of equilibrium.

A remarkable and popular theory of dynamical processes in supercooled liquids is the
so-called mode-coupling theory (MCT), developed by Götze and others [1]. Starting from
a family of schematic equations which include a nonlinear, retarded feedback of the density
fluctuations, one can show that there exists an ‘ideal glass’ transition temperatureTc, below
which the correlation function does not decay to zero (‘broken ergodicity’). A notable
prediction of the theory is the existence of the two regimesβ andα mentioned above, and
a power-law divergence of the ‘slow’ time scaleτ(T ) as(T − Tc)

−γ . However, a detailed
comparison with the experiments [6] shows that the transition temperatureTc, if it exists,
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is much higher than the Vogel–Fulcher temperature, leaving a whole temperature interval
[T0, Tc] where MCT predicts a partial freezing (i.e. theα regime disappears) while the
experimental relaxation time is still finite (and behavesà la Vogel–Fulcher): the evidence
for a (smeared) critical temperature is thus not very compelling. A way to circumvent this
difficulty could be, as recently proposed in [9], to work deep belowTc, where an extension
of the MCT could be unambiguously tested.

However, the physical status of the MCT is not yet very clear: the MCT equations
are formally identical to those describing some mean field, infinite-dimensional models
of spin-glasses [7–9], where the presence ofquencheddisorder is assumed from the start.
Further work should clarify the interpretation of these underlying ‘spin’ degrees of freedom,
the importance of finite dimensionality effects (in particular to allow the existence of
activated processes, which are presumably absent in infinite dimension) and the justification
of introducing quenched disorder by hand, rather than letting it be ‘self-induced’ by the
dynamics [10].

In view of these difficulties, it is interesting to investigate in detail alternative
phenomenological descriptions. Among quite a few other approaches [1, 11], a particularly
simple picture, advocated by many authors over the years, is the following: each particle is
in a ‘cage’, i.e. a potential well created by its neighbours, from which it can escape through
thermal activation [4, 5, 12–15]. As the temperature is decreased, the probability distribution
of local trapping times becomes very broad, and this naturally leads to a two-step relaxation,
stretched exponential decays and Cole–Cole susceptibility spectra. However, two important
facets of these ‘trap’ models have not been addressed previously in the context of glasses.

• At low enough temperatures, the relaxation times exceed the experimental time scales,
and aging effects become important [17–19]. These aging effects have been recently
discussed within the framework of the MCT [9, 16]. Special attention will be devoted
to situations where aging is ‘interrupted’ [17, 20] beyond a finite, but very long, time
scale—which is often the case experimentally.

• Sincea priori all particles can move, the (random) potential well trapping any one
of them is in fact not quenched but time dependent, further enhancing the probability of
moving. In order to understand the glass transition, one must describe how, in a self-
consistent way, all motion ceases. This problem is similar to the one alluded to above in
the context of MCT.

It is the aim of the present paper to discuss three models in detail (a preliminary account
of this work can be found in [15]), as well as to investigate systematically other aspects
of these trap models, such as finite time properties. We also compare the results of this
approach to the observed properties of glasses, and emphasize its strengths and weaknesses.

2. Mean-field model of non-interacting traps

2.1. Definition of the model

We first consider the thermal dynamics ofindependentparticles in a space of traps
characterized by a given probability distributionρ(E) for the depthE ∈ [0, +∞[ of traps
[17]. At temperatureT ≡ β−1, each particle may escape from its trap of depthE with rate
00 e−βE per unit time. In the simplest ‘mean-field’ version, the particle chooses a new trap
of depthE′ with probabilityρ(E′), but with no reference to anyspatial structure: this will
be considered below. The probability densityP(E, t) to be in a trap of depthE at time t
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therefore evolves in time according to the following equation

1

00

∂P (E, t)

∂t
= −e−βE P (E, t) + ω(t)ρ(E) (1)

whereω(t) = ∫ ∞
0 dE e−βEP (E, t) is the average hopping rate at timet . This equation has

to be supplemented by some initial conditionP(E, t = 0) = P0(E).
A natural definition of the (two-time) correlation function within such a model is the

following,

C(tw + t, tw) = 5(tw + t, tw) + q0[1 − 5(tw + t, tw)] (2)

where5(tw + t, tw) is the probability that the particle has not changed trap betweentw and
tw + t :

5(tw + t, tw) =
∫ ∞

0
dEP(E, tw) exp[− (

00 e−βE
)
t ]. (3)

q0 is a certain number measuring the correlation between traps, which we shall set to zero
for simplicity. Equation (2) assumes that no dynamics take place ‘inside a trap’ sinceC ≡ 1
until the particle has jumped out of the trap. If a stationary distribution can be reached at
long times, the correlation function becomestime translation invariantand reads

lim
tw→∞ C(tw + t, tw) = Ceq(t) =

∫ ∞

0
dEPeq(E) exp[−(00 e−βE)t ]. (4)

Note that the above correlation function is a ‘one-particle’ (tracer) correlation function rather
than a ‘collective’ density–density correlation function. It would be interesting to extend
the following calculations to the latter case.

2.2. Existence of a stationary distribution

There exists anormalizablestationary distributionPeq(E) at temperatureT = β−1 only if

ωeq(β) ≡ 1∫ +∞

0
dE e+βEρ(E)

> 0 (5)

in which case

Peq(E) = ωeq(β) e+βEρ(E). (6)

In particular, Peq(E) always exists at infinite temperature(β = 0) and is equal to the
‘bare’ distribution ρ(E). The transition between the high-temperature phase (T > T0)
wherePeq(E) exists, and the low-temperature phaseT < T0 wherePeq(E) ceases to be
normalizable, takes place at the temperatureT0 defined by

1

T0
= β0 ≡ lim

E→∞

[
− logρ(E)

E

]
. (7)

We may therefore distinguish the three cases:
• T0 = 0 if ρ(E) decays faster than exponentially at largeE;
• T0 = ∞ if ρ(E) decays slower than exponentially at largeE;
• T0 is finite in the interesting case whereρ(E) decays exponentially as e−β0E at large

E. This exponential form is suggested by the mean-field replica theory of spin-glasses [21],
the random energy model [22] and by phenomenological arguments in the context of glasses
[14]. It has also been found exactly in the one-dimensional ‘random force’ model [23] and
was used to interpret anomalies in the transport properties of amorphous conductors (see
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e.g. [24]). Its ubiquity in random systems is probably related to the fact that it is a stable
extreme value distribution [25].

For this exponential density of states, the trapping timeτ ≡ 0−1
0 eβE is distributed as a

power law for largeτ :

9(τ) ∝
τ→∞

00

(00τ)1+x
x ≡ T

T0
. (8)

Since this model exhibits a true finite temperature ‘glass’ transition, its study is most
interesting. However, the case of a Gaussian density of states, where strictly speaking
T0 = 0, exhibits several features very similar to those observed in real glasses, and will
thus also be studied in detail.

2.3. Relaxation towards the equilibrium distribution forT > T0

At infinite temperature(β = 0), the solution of (1) may be directly written sinceω(t) ≡ 1

P(E, t) = ρ(E) + [P(E, 0) − ρ(E)] e−00t . (9)

At finite temperature, we may analyse the solution of (1) through a Laplace transform:
introducingP̂ (E, λ) ≡ ∫ ∞

0 dt [P(E, t) − Peq(E)] e−λ00t , one obtains

P̂ (E, λ) = (1/00)[P(E, t = 0) − Peq(E)] + ω̂(λ)ρ(E)

λ + e−βE
(10)

with the definition

ω̂(λ) ≡
∫ ∞

0
dE′ e−βE′

P̂ (E′, λ). (11)

Solving for ω̂(λ), one finds

ω̂(λ) = 1

00λ

ωeq −

∫ ∞

0
dEP(E, 0)/(1 + λ eβE)∫ ∞

0
dE ρ(E) eβE/(1 + λ eβE)

 . (12)

In the interesting case of an exponential density of statesρ(E) ∝ e−β0E , the denominator
has a regular expansion up to the orderλn, wheren is the integer part ofx − 1 (x = T/T0),
followed by a singular term of orderλx−1. Hence, if P(E, 0) is sharply peaked (e.g.
P(E, 0) = δ(E − E0)), the smallλ expansion ofP̂ (E, λ) has aλx−2 singularity, indicating
that the differenceP(E, t) − Peq(E) decays for large times as

P(E, t) − Peq(E) ∝
t→∞ t−(x−1). (13)

This decay is, not surprisingly, precisely the same as that of the correlation functionCeq

defined by equation (4) [15]:

Ceq(t) =
∫ ∞

0
dEωeq(β) e+βEβ0 e−β0E exp[−(00 e−βE)t ] '

t→∞ ωeq(β)0(x)(00t)
−(x−1). (14)

Note that the relaxation timeτ(T ), defined as the time after which the correlation has
decayed down to a certain valuec, divergesà la Vogel–Fulcher, i.e.

τ(T ) ' 1

00

(
c

ωeq(β)0(x)

)(T0/(T −T0))

. (15)
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Another usual definition of the ‘terminal’ time, throughτ1 = ∫ ∞
0 dtCeq, would, however,

lead to a power-law divergenceat a higher temperature2T0

τ1 = ωeq(β)β0

00

∫ ∞

0
dE e(2β−β0)E =

T >2T0

ωeq(β)

00

(
T

T − 2T0

)
. (16)

The existence oftwo characteristic temperatures in this model was recently emphasized in
the context of glasses by Odagaki [14]. Ifρ(E) decays faster than exponentially (say as
exp(−E1+ν)), the relaxation towards equilibrium is faster than any power law, since the
smallλ expansion ofP̂ (E, λ) is regular. However, slower than exponential relaxation (such
as exp−(log t)1+ν) is expected. More generally, the long time behaviour ofP(E, t)−Peq(E)

is the same as that ofCeq for large t .

2.4. Non-normalizability and aging in the low-temperature phase

When there is no equilibrium distribution (5), one expects that the dynamics will never
become stationary [17, 26, 27, 15], and this leads to aging effects. One may look at large
time for a scaling solution for equation (1). We introduce the natural dimensionless scaling
variableu = eβE/00t and a dimensionless functionφ normalized as

∫ ∞
0 du φ(u) = 1 and

try to find the asymptotic distribution function through the form

P(E, t) '
t→∞ βuφ(u). (17)

The resulting equation forφ is

u2 dφ

du
+ (u − 1)φ(u) = − 1

β
ρ

(
log(00tu)

β

) ∫ ∞

1/00t

dv
φ(v)

v
. (18)

The left-hand side presents at independent limit ast → ∞ only if the integral on the left-
hand side diverges in such a way that it compensates exactly the decay ofρ(log(00tu)/β)

as t → ∞.
Consider for example the case of an exponential density of statesρ(E) = β0 e−β0E , for

which there is no equilibrium distribution whenx ≡ T/T0 ∈]0, 1[.
In order to get some sensible limit of equation (18) ast → ∞, the functionφ must

present the singularity

φ(u) '
u→0

γ u−x (19)

whereγ is some normalization constant. The solution of the resulting equation

u2 dφ

du
+ (u − 1)φ(u) = −γ u−x (20)

satisfying the normalization condition
∫ ∞

0 du φ(u) = 1 reads

φ(u) = sinπx

π0(x)

1

u
e−1/u

∫ 1/u

0
dy yx−1 ey. (21)

The consequence of the scaling form (17) on the correlation functionC or 5 defined
as the probability for the particle to remain in the same trap during the interval [tw, tw + t ]
(see equation (2))

5(tw + t, tw) =
∫ ∞

0
dEP(E, tw) e−(00 e−βE)t (22)

is the aging behaviour

5(tw, tw + t) '
∫ ∞

0
du φ(u) e−1/u(t/tw) (23)
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Figure 1. Correlation functionCeq(t) (multiplied by a ‘mock’ β relaxation Cβ(t) ≡
exp(−q2r2(t)/2), where r(t) describes a diffusive motion in an harmonic potential well:
r2(t) = ξ2

0 [1 − exp(−t/τ0)]; ξ0 can be thought as the ‘size’ of the cage, andξ2
0 /τ0 of the

order of the high-temperature diffusion constant). (a) Exponential density of states. A plot of
CeqCβ(t) against log10(00t) for qξ0 = 0.5, τ0 = 50−1

0 andT/T0 = 2.0, 1.1, 1.03. (b) Gaussian

density of states. A plot ofCeqCβ(t) against log10(00t) for qξ0 = 0.5, τ0 = 50−1
0 and

T/Ec = 0.5, 0.25, 0.15. Note that the plateau observed for the lowest temperature eventually
decays to zero.

where the two times only appear now through the combination(t/tw). This must be
contrasted with the situation prevailing forT > T0, where as soon astw � τ(T ), P(E, tw)

ceases to depend ontw and the correlation function only depends on the time difference
t , and is plotted in figure 1(a) for different values ofT/T0. (We have included a ‘fast’
relaxation inside each trap—seen as a simple harmonic well, in order to mimic theβ

regime of glasses.)
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For the case of the exponential density of states, using equation (21) we recover the
explicit formula derived in [26] through another approach

5(tw + t, tw) ' sinπx

π

∫ 1

(t/tw)/(1+(t/tw))

dv(1 − v)x−1v−x (24)

with the asymptotic behaviours

5(tw + t, tw) ' 1 − sinc[π(1 − x)]

(
t

tw

)1−x

for t � tw (25)

5(tw + t, tw) ' sinc[πx]

(
t

tw

)−x

for t � tw (26)

where we have introduced the notation sinc[u] ≡ sinu/u.

2.5. The case of Gaussian density of states at low temperature: stretched exponentials and
interrupted aging

Let us consider the interesting case of a Gaussian density of states

ρ(E) = 2√
πEc

e−(E/Ec)
2

(27)

which corresponds to a situation where the energy barriers results from a (weak) interaction
with many neighbours. Strictly speaking, there is a stationary distribution for any positive
temperature (6):

Peq(E) = ωeq(β)
2√
πEc

e+βE e−(E/Ec)
2 ≡ N e−(E−E∗)2/E2

c whereE∗ = 1
2Ec(βEc). (28)

However, at very low temperatureT � Ec, there exists an approximate aging behaviour
on the time interval satisfying

0 � ln(00t) � (βEc)
2 (29)

but this aging phenomenon progressively disappears as time becomes large. The physical
reason is the following: as can be seen directly fromρ(E), the distribution of relaxation
timesτ = 0−1

0 eβE can be written (for larget) as

9(τ) ∝
τ→∞ τ−1−ln(00τ)/(βEc)

2
. (30)

Hence, the parameterx = T/T0 defined in the previous paragraphs is replaced by a slowly-
varying functionx(t) = 2 log(00t)/(βEc)

2. (The factor two comes from a more careful
analysis—see below.) The above inequality thus corresponds to the case wherex(t) � 1,
where aging effects are indeed expected.

More explicitly, one may look for an approximate scaling solution of (1) analogous to
(17)

P(E, t) ' βuφt(u) (31)

whereu = eβE/00t and where the functionφt is supposed to vary slowly in time. More
precisely, in the resulting equation forφt

−ut
∂φt

∂t
+ u2 ∂φt

∂u
+ (u − 1)φt (u) = − 1

β
ρ

(
log(00tu)

β

) ∫ ∞

1

dv

v
φt

(
v

00t

)
(32)
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we assume that the first term containing the time derivative is negligible in comparison to
others. We now, therefore, consider the simplified equation

u2 dφt

du
+ (u − 1)φt (u) ' − 1

β
ρ

(
log(00tu)

β

) ∫ ∞

1

dv

v
φt

(
v

00t

)
(33)

and we will discuss the validity of the hypothesis made on the explicit solution obtained
for (33).

For 00t � 1, the functionφt must present the following asymptotic behaviour,

φt(u) '
u→0

A(t)u−x(t) e−(logu/βEc)
2

(34)

and (33) becomes

u2 dφt

du
+ (u − 1)φt (u) ' A(t)u−x(t) e−(logu/βEc)

2
. (35)

The solution reads

φt(u) = A(t)
1

u
e−1/u

∫ 1/u

0
dy yx(t)−1 e−(logy/βEc)

2
ey (36)

whereA(t) is determined through the normalization condition
∫ ∞

0 du φt = 1

1

A(t)
=

∫ ∞

0
dy e−y

∫ +∞

−∞
dz

ezx(t)

ez + y
e−(z/βEc)

2
. (37)

The asymptotic behaviours ofφt(u) are respectively given by (34) foru → 0, and by the
following for u → ∞

φt(u) '
u→∞

A(t)

x(t)
u−1−x(t) e−(logu/βEc)

2
. (38)

We may now estimate the order of the term dropped in (32):∣∣∣∣ut
∂φt

∂t

∣∣∣∣ =
∣∣∣∣ut

dx(t)

dt

∂φt

∂x(t)

∣∣∣∣ =
∣∣∣∣ 2

(βEc)2
u

∂φt

∂x(t)

∣∣∣∣ ∼
∣∣∣∣ 2 logu

(βEc)2
uφt (u)

∣∣∣∣ . (39)

The comparison with other terms of (32) shows that the approximation (33) holds at low
temperature(βEc)

2 � 1, and not too largeu, i.e. logu/(βEc)
2 � 1,

Let us now explain how our analysis is compatible with the relaxation towards the
equilibrium distribution (28). At low temperature (βEc � 1), this equilibrium distribution
is concentrated in a region of scaleEc around the central valueE∗ = βE2

c/2 which is
very large compared toEc. This is why during a very long time interval, the probability
distribution P(E, t) is pushed towards deeper and deeper traps as if there were no
equilibrium distribution. More precisely, as soon as00t � 1, P(E, t) enters an aging-like
scaling regime in the variableu = eβE/00t as in the case of the exponential distribution
below the transition (T < T0). From the above remark concerning the shape of9(τ)

(equation (30)), one expects that the aging behaviour disappears asx(t) gets close to the
value 1. Then the normalizability ofPeq(E) becomes noticeable, the probability distribution
P(E, t) begins to stabilize, and the scaling variableu = eβE/00t loses its meaning. In
the limit x(t) → ∞, the functionφt becomes concentrated in the regionu → 0, and the
asymptotic behaviour (34) precisely corresponds to the equilibrium distribution (28) when
one replacesu by eβE/00t .

We now turn to the correlation function5 defined in (22). For00tw � 1, one has in
terms of the functionφtw (u) of equation (36)

5(tw + t, tw) '
∫ ∞

0
du φtw (u) e−(1/u)(t/tw). (40)
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Here, in contrast to the real aging behaviour (23),5(tw + t, tw) is not a function of(t/tw)

only, since the functionφtw slowly varies with the waiting timetw. In particular, using the
asymptotic behaviours (34) and (38), one has respectively at short timet � tw

5(tw + t, tw) '
t�tw

1 − A(tw)

∫ ∞

0
du u−x(tw) e−(logu/βEc)

2
(1 − e(−1/u)(t/tw)) (41)

and at large timet � tw

5(tw + t, tw) '
t�tw

A(tw)

x(tw)

∫ ∞

0
dy yx(tw)−1 e−(logy/βEc)

2
e−y(t/tw). (42)

To obtain more explicit behaviours, we specialize to the interesting regime 0< x(tw) <

1 where the aging-like behaviour occurs. In this regime, the normalization constant (37)
may be expanded according to

1

A(tw)
=

(
1 − 1

(βEc)2

∂2

∂x(tw)2
+ · · ·

) ∫ ∞

0
dy e−y

∫ +∞

0
dz

zx(tw)

z + y
(43)

= exp

[
−

(
1

βEc

∂

∂x(tw)

)2][
π0(x(tw))

sinπx(tw)

]
. (44)

The explicit expression of the first correction in the small parameter 1/(βEc)
2 shows

that the approximation

A(tw) ' sinπx(tw)

π0(x(tw))
(45)

is valid for 1/βEc � x(tw) � 1 − 1/βEc.
The two asymptotic expressions (41) and (42) may be analysed in the same way. At

short times

5(tw + t, tw) '
t�tw

1 − A(tw) exp

[
−

(
1

βEc

∂

∂x(tw)

)2
] [

0(x(tw))

1 − x(tw)

(
t

tw

)1−x(tw)
]

(46)

can be approximated by

5(tw + t, tw) '
t�tw

1 − sinc[π(1 − x(tw))]

(
t

tw

)1−x(tw)

(47)

for 1/βEc � x(tw) � 1 − 1/βEc and for t/tw not exponentially small in(βEc)
2.

At large times,

5(tw + t, tw) '
t�tw

A(tw)

x(tw)
exp

[
−

(
1

βEc

∂

∂x(tw)

)2
] [

0(x(tw))

(
t

tw

)−x(tw)
]

(48)

may be reduced to

5(tw + t, tw) '
t�tw

sinc[πx(tw)]

(
t

tw

)−x(tw)

(49)

for 1/βEc � x(tw) � 1 − 1/βEc and t/tw not exponentially large in(βEc)
2.

As anticipated, these expressions are very similar to those obtained for the exponential
density of states, provided one defines an effective time dependent parameterx(t). (Actually,
when | ln(t/tw)| � 1, a slightly more accurate expression of (47) and (49) is obtained by
replacing the exponentx(tw) by (x(t)/2), in agreement with the naive interpretation of
equation (30).)
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Let us now concentrate on times such thatx(tw) > 1: aging effects cease, and the
stationary dynamics resume. The resulting correlation function

Ceq(t) =
∫ ∞

0
dE ωeq(β) eβE 2√

πEc
e−(E/Ec)

2
exp[−(00 e−βE)t ] (50)

is plotted in figure 1(b) and displays very interesting features. To a very good approximation,
one may replace the effect of the last exponential by a simple cut-off:

Ceq(t) '
∫ ∞

ln(00t)/β

dE ωeq(β) eβE 2√
πEc

e−(E/Ec)
2
. (51)

One thus finds the following behaviour:

∂Ceq(t)

∂ ln(00t)
' − 1√

πβEc
exp[−(ln(t/τ (T ))/βEc)

2] (52)

whereτ(T ) ≡ (1/00) exp((βEc)
2/2) is the time scale associated with theα regime. As

mentioned in the introduction, the experimental data onτ(T ) can indeed be fitted by such
a law [4]. Note, however, that the ‘terminal’ time scale, defined asτ1 = ∫ ∞

0 Ceqdt ,
and extracted, in supercooled liquids, from viscosity measurements, is given byτ1 '
(1/00) e

3
4 (βEc)

2
τ(T ) at low temperature†.

Equation (52) shows that the correlation functions obtained for different temperatures
approximately fall onto a master curve if one plots them as a function oft/τ (T ), provided
the variation of βEc (compared to that ofτ(T )) can be neglected. Furthermore, as
emphasized in [28], the shape of the relaxation function given by equation (52) is actually
very close, in the region wheret andτ(T ) are not too different, to astretched exponential‡
Ceq(t) = exp−(t/τ (T ))α(T ), provided one identifiesα(T ) ' (1 + (βEc)

2/2)−
1
2 [28].

These features are again reminiscent of the experimental ones, where an approximate
scaling ofCeq(t) for various temperatures can indeed be achieved, and where a stretched
exponential (or Kohlrausch) form for the decay in theα regime is quite often proposed (see
the discussion in [1]). Interestingly, the exponentα extracted from experimental fits has a
tendency to decrease as the temperature is decreased (see, e.g., figure 16 of [29]).

Finally, let us stress that many of the results of the present section are not restricted to
the Gaussian form of the density of states, and would still hold ifρ(E) ∝ exp−(E/Ec)

1+ν ,
ν > 0 with (βEc)

2 replaced by(βEc)
1+1/ν (up to ν dependent prefactors). Such a

generalized model has been recently discussed in the context of glasses in [30]. An
interesting point to notice is that the varianceσ 2 of the log-normal form of∂Ceq(t)/∂ ln t

is related to its maximum throughσ 2 = (1/ν) ln τ(T ). Such a relation was also obtained
by Souletie using different arguments [31], and is not incompatible with experimental data.

The conclusion of this section is that stretched exponential decay and scaling of the
relaxation curves can occur in the absence of any criticality or cooperative effects, and
arises even when the distribution of local energy barriers decays quite fast for largeE. An
interesting consequence is the appearance of ‘interrupted aging’ effects for low temperatures,
with a correlation function described by equations (47) and (49). Note that this correlation
nearly scales ast/tw, but with a systematic bias similar to the one discussed in [20].

The above model is, however, oversimplified since:
(i) no spatial structureis included; and

† Note, however, that the long time behaviour ofCeq(t) is well approximated byCeq(t) ∝ (τ2/t)µ with
µ = (T /Ec)

2 log00t andτ2 = 0−1
0 exp(βEc)

2, showing that there is actually quite a bit of freedom to choose the
rescaling time factorτ(T ) without affecting too much the quality of the scaling.
‡ Note, the stretched exponential exponent is usually calledβ, although it describes theα relaxation in glasses,
and should furthermore not be confused with the inverse temperature. We have thus proposed in [9] to call itα.
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(ii) the particles are independent.
The next two sections aim at discussing, at least partially, these aspects.

3. Model of traps in Euclidean space

3.1. Continuous-time random walks

We now consider that the traps live on ad-dimensional hypercubic lattice. The particle
performs a usual random walk on this lattice, but has to wait for a certain trapping timeτ

before each jump [24]. For a trap of depthE, the distribution of the trapping timeτ reads

9E(τ) = 00 e−βE exp[−(00 e−βE)τ ]. (53)

If ρ(E) denotes the probability distribution of the depthE of the traps, the particle performs
a random walk among traps with a distribution of trapping times

9(τ) =
∫ ∞

0
dE ρ(E)9E(τ). (54)

Note that we consider here a model with annealed disorder, where the energyE for a given
site changes at each visit of the particle. This is justified for dimensionsd > 2, where
the particle rarely visits the same site twice. The model that we consider is thus the well
known ‘continuous time random walk’ (CTRW) first introduced by Montroll and Scher, and
discussed many times [32]. However, the non-stationary properties of the low-temperature
phase (when it exists) has, to our knowledge, never been considered—only the case where
the waiting timetw is zero has been investigated. We shall thus focus on the following
natural correlation function,

C(q, t + tw, tw) = 〈eiq·(r(t+tw)−r(tw))〉 (55)

in particular in the case where there is no equilibrium distribution for (1).

3.2. Correlation functionC(q, t, tw = 0)

We shall first recall the result for a vanishing waiting timetw = 0, which is the case usually
considered [32]. One has by definition

C(q, t, 0) = 〈eiq·(r(t)−r(0))〉 =
∑

r

eiq·rP(r, t |0, 0) (56)

where the summation is over all sites of the lattice. The probability density may be
decomposed according to the number of jumpsN as

P(r, t |0, 0) =
∞∑

N=0

QN(r)Rt (N) (57)

whereQN(r) denotes the probability to be at siter afterN jumps for a usual random walk
on the lattice.Rt(N) denotes the probability to performN jumps in timet and reads in
terms of the distribution9(τ) of trapping time and Heaviside functionθ

Rt(N) =
( N+1∏

i=1

dτi9(τi)

)
θ

(
t −

N∑
i=1

τi

)
θ

( N+1∑
i=1

τi − t

)
(58)

or more explicitly in terms of the probability density9N(τ) of the sumτ = ∑N
i=1 τi of N

independent trapping times

Rt(N) =
∫ t

0
dτ(9N(τ) − 9N+1(τ )). (59)
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The correlation function may then also be decomposed according to the number of jumps
N as

C(q, t, 0) =
∞∑

N=0

Rt(N)Q̂N(q) (60)

whereQ̂N(q) denotes the Fourier transform of a usual random walk on ad-dimensional
hypercubic lattice of lattice spacinga starting from site0

Q̂N(q) =
∑

r

eiq·r(t)QN(r) =
(

1

d

d∑
µ=1

cos(qµa)

)N

. (61)

It is convenient to introduce the Laplace transform

C̃(q, λ, 0) =
∫ ∞

0
dt e−λtC(q, t, 0) =

∞∑
N=0

Q̂N(q)R̃λ(N) (62)

where

R̃λ(N) =
∫ ∞

0
dt e−λtRt (N) = 1

λ
(9̃(λ))N [1 − 9̃(λ)] (63)

in terms of the Laplace transform̃9(λ) of the distribution9(τ) of trapping time

9̃(λ) =
∫ ∞

0
dτ e−λτ9(τ). (64)

We finally obtain

C̃(q, λ, 0) = 1

λ

1 − 9̃(λ)

1 − 9̃(λ)

(
(1/d)

d∑
µ=1

cos(qµa)

) . (65)

3.3. Correlation functionC(q, t + tw, tw)

We now turn to the case of arbitrary waiting timetw where the correlation function now
reads

C(q, t + tw, tw) =
∑

r

∑
rw

eiq·(r−rw)

×
∫ ∞

0
dEwP(r, t + tw|rw, Ew, tw)P(rw, Ew, tw|0, 0) (66)

whereEw is the energy of the trap needed attw. It is convenient to reorganize this expression
as follows

C(q, t + tw, tw) =
∫ ∞

0
dEw

∑
rw

P(rw, Ew, tw|0, 0)

×
∑

r

eiq·(r−rw)P(r, t + tw|rw, Ew, tw) (67)

and to decompose the conditional probabilityP(r, t + tw|rw, Ew, tw) into

P(r, t + tw|rw, Ew, tw) = δr,rw
exp[−(00 e−βEw)t ]

+
∫ t

0
dτ9Ew

(τ )
1

2d

∑
e

P(r, t − τ |rw + e, 0). (68)
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The first term takes into account the probability to stay in the traprw of energyEw during
the time interval [tw, tw + t ]. The second term describes the probability to jump at the time
tw + t out of the trap of energyEw to go to one of the 2d neighboursrw + e of rw, and
where the ‘aging’ process starts anew. One has, therefore,∑

r

eiq·(r−rw)P(r, t + tw|rw, Ew, tw) = exp[−(00 e−βEw)t ] (69)

+
∫ t

0
dτ 9Ew

(τ )

(
1

d

d∑
µ=1

cos(qµa)

)
C(q, t − τ, tw = 0). (70)

Noticing that ∑
rw

P(rw, Ew, tw|0, 0) = P(Ew, tw) (71)

is simply the probability distribution studied in the previous section (1), and that∫ ∞

0
dEw P (Ew, tw) exp[−(00 e−βEw)t ] = 5(t + tw, tw) (72)

is the correlation function (22) introduced previously, we obtain finally

C(q, t + tw, tw) = 5(t + tw, tw)

−
(

1

d

d∑
µ=1

cos(qµa)

) ∫ t

0
dτ C(q, t − τ, tw = 0)

∂

∂τ
5(τ + tw, tw). (73)

This convolution product leads one to introduce the Laplace transforms

C̃(q, λ, tw) =
∫ ∞

0
dt e−λtC(q, t + tw, tw) (74)

and

5̃(λ, tw) =
∫ ∞

0
dt e−λt5(t + tw, tw) (75)

to get the simpler relation

C̃(q, λ, tw) = 5̃(λ, tw)

[
1 − λ

(
1

d

d∑
µ=1

cos(qµa)

)
C̃(q, λ, 0)

]

+
(

1

d

d∑
µ=1

cos(qµa)

)
C̃(q, λ, 0). (76)

Equation (65) finally gives

C̃(q, λ, tw) = 5̃(λ, tw)


1 −

(
(1/d)

d∑
µ=1

cos(qµa)

)

1 − 9̃(λ)

(
(1/d)

d∑
µ=1

cos(qµa)

)


+1

λ

1 − 9̃(λ)(
(1/d)

d∑
µ=1

cos(qµa)

)−1

− 9̃(λ)

. (77)
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Another quantity of interest in glasses is the susceptibility, which is related to the above
correlation function through

χ(q, ω, tw) = 1 + iω
∫ ∞

0
dt eiωtC(q, tw + t, tw) ≡ 1 + iωC̃(q, −iω, tw) (78)

(see, however, [8] for a discussion of the fluctuation-dissipation theorem in this context).

3.4. The case of exponential density of states at low temperature

For the exponential density of statesρ(E) = β0 exp(−β0E), there is no equilibrium
distribution for the process (1) whenx ≡ T/T0 < 1. The correlation function5 is known
in this case (24) and its Laplace transform reads

5̃(λ, tw) ' 1

tw

∫ ∞

0
du e−(λtw)u sinπx

π

∫ 1

u/(1+u)

dv(1 − v)x−1v−x (79)

with the asymptotic behaviours

5̃(λ, tw) '
λtw�1

1

0(1 + x)

(λtw)x

λ
(80)

5̃(λ, tw) '
λtw�1

1

λ

[
1 − 1

0(x)

1

(λtw)1−x

]
. (81)

The distribution of trapping times

9(τ) =
∫ ∞

0
dE ρ(E)00 e−βE exp[−(00 e−βE)τ ] = x00

(00τ)1+x

∫ 00τ

0
dy yx e−y (82)

presents the slow algebraic decay

9(τ) '
(00τ)→∞

x0(1 + x)

0x
0τ 1+x

(83)

and its Laplace transform presents, therefore, the non-analytic behaviour

9̃(λ) =
∫ ∞

0
dτ e−λτ9(τ) '

(λ/00)→0+
1 − 1

sincπx

(
λ

00

)x

. (84)

Moreover, one has for wavevectors such that 1/q is much larger than the lattice spacinga(
1

d

d∑
µ=1

cos(qµa)

)
'

|q|�1/a
1 − a2

2d
q2 + · · · . (85)

It is convenient to introduce the time scaletq

(00tq)
x = 2d

(qa)2
(86)

corresponding to the typical time needed by the particle to spread over a region of size
1/q. There are, therefore, three time scales in (77):λ−1, tq , tw. We are interested in the
region where all three are much bigger than the microscopic time scale0−1

0 : λ−1 � 1/00,
(79)–(84),tq � 1/00, (85) andtw � 1/00, (79). We still we have to distinguish various
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regimes in (77). We give the asymptotic results for the correlation functionC(q, t + tw, tw)

after the inversion of the Laplace transform (77):

C(q, t + tw, tw) ' 1 − sinc[π(1 − x)]

(
t

tw

)1−x

for tq � t � tw (87)

C(q, t + tw, tw) ' sinc[πx]

(
t

tw

)−x

for tq � tw � t (88)

C(q, t + tw, tw) ' 1 − sinc[πx]

0(x)

t

txq t1−x
w

for t � tw and t � tq (89)

C(q, t + tw, tw) ' 1 − sinc[πx]

0(1 + x)

(
t

tq

)x

for tw � t � tq (90)

C(q, t + tw, tw) ' 0(1 + x)

(
t

tq

)−x

for tw � tq � t. (91)

There are three interesting points to notice.
• For qa very large, such thattq � t, tw, we find the same asymptotic behaviours as

for 5(t + tw, tw) (25)–(26) in the previous section. Physically, this means that as soon as
the particle has jumped once, the rapidly oscillating correlation function averages to zero.
Hence, only the particles which have not yet moved contribute to the correlation.

• There are two regimes where the correlation function behaves similarly to a stretched
exponential at small times, whentq � t � tw or tw � t � tq . The exponentα of
this stretched exponential is, however, different in both cases: it is equal toα = x when
tw � t � tq , and equal toα = 1 − x in the other case.

One should, however, stress once more that the present trap model is unable to explain
why there should be a relation between the exponentα describing the decay of the correlation
in the α regime which we discuss here, and the shape of the relaxation in the short-time
(β) regime, which corresponds to intra-trap dynamics. That such a link exists is one of the
major predictions of the MCT, which should also exist deep in the glass [9] phase, where
aging effects similar to those discussed here are present.

• The frequency dependent susceptibility defined by equation (78) behavesin a Cole–
Cole fashion,

χ(q, ω, tw = 0) ' 1

1 + (−iωtq)x
(92)

for ω � 00, qa � 1. This has been emphasized in, for example, [33]. However, in the
aging regimeωtw � 1, the behaviour ofχ is given by

χ(q, ω, tw) ' 1

0(x)(−iωtw)1−x
. (93)

A similar expression was obtained in the context of spin-glasses in [26].

4. Model of interacting particles in traps

4.1. Definition of the model

In the above sections, we have considered models for which the motion of a given particle
out of its trap does not affect the potential seen by the others. In order to model this effect,
we have proposed in [15] to add to model (1) a diffusion term in energy space proportional
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to the mean hopping rate itself,ω(t) = ∫ ∞
0 dE e−βEP (E, t). The equation forP(E, t) then

reads

1

00

∂P

∂t
= −e−βEP + ω(t)ρ(E) + ω(t)D

∂

∂E

[
ρ(E)

∂P

∂E
− P

dρ

dE

]
. (94)

This diffusion term expresses the fact that every ‘hop’ induces a small change in all the
neighbouringE’s. Assuming that the transition rate is proportional to the final density of
states, the contribution of such an effect to the master equationa priori reads

ω(t)

∫
dE′ T (|E − E′|){P(E′, t)ρ(E) − P(E, t)ρ(E′)}.

In the limit where the width ofT (|E − E′|) is small, justified in a mean-field limit where
the number of neighbours is large, this term reduces to the diffusion-like term in (94), with
an effective diffusion constantD proportional to the width ofT . More general forms for
this diffusion term will be discussed below.

As before, equation (94) has to be supplemented by some initial conditionP(E, t =
0) = P0(E) and by a ‘hard wall’ boundary condition atE = 0,[

ρ(E)
∂P (E, t)

∂E
− P(E, t)

dρ

dE

] ∣∣∣∣
E=0

= 0 (95)

to ensure the conservation of probability.

4.2. Existence of a stationary distribution

There exists a stationary distributionPeq(E) at temperatureT = β−1 only if the equation

−D
d2Peq(E)

dE2
+

[
D

ρ ′′(E)

ρ(E)
+ e−βE

ωeqρ(E)

]
Peq(E) = 1 (96)

supplemented by the boundary condition (95) admits a normalizable solution. The discussion
again depends onT0 = β−1

0 introduced in (7).
• For T > T0, the asymptotic behaviour at high energy of the solution of (96) reads

Peq(E) '
E→∞

ωeqeβEρ(E) (97)

which is normalizable sinceβ < β0.
• For T < T0, equation (96) can be approximated at high energy by

d2Peq(E)

dE2
− ρ ′′(E)

ρ(E)
Peq(E) = − 1

D
. (98)

The general solution reads using arbitrary constantsA andB

Ag1(E) + Bg2(E) + 1

D

[
g1(E)

∫ E

0
dv g2(v) + g2(E)

∫ ∞

E

dv g1(v)

]
(99)

in terms of the two independent solutions

g1(E) = ρ(E) and g2(E) = ρ(E)

∫ E

0

du

ρ2(u)
(100)

of the homogeneous equation. Taking into account thatρ(E) decays at least exponentially
at largeE for β0 < +∞, one may show that there is no normalizable solution.

In summary, the conditions for the existence of a stationary distribution in term ofT0

are, therefore, exactly the same as in the caseD = 0 (7).
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The case of an exponential density of states was considered in [15]. For completeness,
we give the explicit form of the equilibrium distribution,

Peq(E) = N
[
Kν(z)

Iν−1(z0)

Kν−1(z0)
Kν(z0) + Kν(z)(Iν(z0) − Iν(z)) + Iν(z)Kν(z)

]
(101)

whereν = 2T/(T − T0), z ≡ z0 exp(E/νT0), andz0 = (νT
3/2

0 /
√

D)(
√

00/
√

0). Iν andKν

are the Bessel functions of orderν, and

Kν(x) ≡
∫ ∞

x

du

u
Kν(u) Iν(z) ≡

∫ z

0

du

u
Iν(u).

N and0 are fixed by the normalization ofPeq(E) and the boundary condition (95), which
lead to the following equation:

D

ν3T 3
0

= Iν−1(z0)

Kν−1(z0)
[Kν(z0)]

2 + 2
∫ ∞

z0

du

u
Iν(u)Kν(u). (102)

4.3. Aging in the low-temperature phase

When there is no equilibrium distribution (5), we may proceed as in the caseD = 0
(section 2.4) and look for a scaling solution of the form (17) for equation (94). The
resulting equation for the dimensionless functionφ again only admits some non-trivial limit
as t → ∞ if the left-hand side of (18) does. For an example, in the case of an exponential
density of statesρ(E) = β0 e−β0E , in which there is no equilibrium distribution when
x ≡ T/T0 ∈ ]0, 1[, the functionφ must present the singularity (19)

φ(u) '
u→0

γ u−x. (103)

The equation forφ now generalizes equation (20)

1u3 d2φ

du2
+ [31u2 + u2+x ]

dφ

du
+ [1(1 − x3)u + (u − 1)ux ]φ(u) = −γ (104)

where 1 = γDβ3. The normalization constantγ is determined by the normalization∫ ∞
0 du φ(u) = 1. In contrast to the caseD = 0 (21), the solutionφ cannot be explicitly

written. However, its asymptotic behaviour at largeu is easily obtained from (104):

φ(u) '
u→∞

γ

x
u−1−x. (105)

The aging behaviour (23) of the correlation function (22) still holds as a consequence
of the scaling form (17). The asymptotic behaviours (103)–(105) of the scaling functionφ

induce the asymptotic expressions generalizing (25) and (26) for the correlation function

5(tw, tw + t) ' 1 − γ
0(x)

(1 − x)

(
t

tw

)1−x

for t � tw (106)

5(tw, tw + t) ' γ
0(x)

x

(
t

tw

)−x

for t � tw. (107)

The presence of the diffusion term in (94), therefore, only affects the normalization
constantγ , but does not change the asymptotic time dependence of the correlation function
5(tw, tw + t) of the model (1). This suggests that the difference between the model
considered in section (2.4) (corresponding toD ≡ 0) and the ‘annealed’ model considered
here is, to some extent, irrelevant.
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4.4. Possible generalizations of model (94)

Model (94) may in fact be generalized through the introduction of an energy-dependent
diffusion constant, i.e.

1

00

∂P

∂t
= −e−βEP + ω(t)ρ(E) + ω(t)

∂

∂E

(
D(E)

[
ρ(E)

∂P

∂E
− P

dρ

dE

])
(108)

with the same boundary condition (95) as before to ensure the conservation of probability.
ρ(E) still corresponds to the equilibrium distribution at infinite temperature (β = 0). The
choiceD(E) = D0/ρ(E), for example, would correspond to an ‘entropy’ biased diffusion
in energy space, with a driving force proportional to d logρ/dE, and an effective diffusion
constant independent ofE.

A careful study of the existence of a stationary solution to this equation shows that there
are two cases.

• If lim
E→∞

logD(E)/E 6 0, the transition takes place as before at the inverse temperature

β0 (7).
• If lim

E→∞
logD(E)/E > 0, there exists a stationary distribution at any finite temperature.

In the case whereD(E) = D0/ρ(E) andρ(E) are exponential, for example, one finds that
the largeE behaviour ofPeq(E) is of the form:

Peq(E) '
E→∞

A e−β0E + B e−2β0E (109)

showing that the correlation function now decays asCeq(t) ∝ t−(1+T/T0) for large times.
Note that the terminal time scaleτ1 = ∫ ∞

0 dt Ceq(t) diverges whenT < T0, although no
asymptotic aging effects appear in this temperature regime.

5. Conclusion

We have studied in this paper a model of particle hopping between energy ‘traps’ with an
arbitrary density of energy barriersρ(E). As emphasized in [17, 26, 15], the case where
ρ(E) decays exponentially is special because it leads to a true dynamical phase transition
between a high-temperature phase and a low-temperature aging phase. More generally,
however, one expects that for a large class ofρ(E), ‘interrupted’ aging effects appear at
low enough temperatures, with an ergodic time growing faster than exponentially. It would
be interesting to look systematically for aging effects experimentally [18]. Furthermore,
the relaxation functions have a strongly stretched shape (see, for example, figure 1(b)),
which can be fitted as stretched exponentials. The case where the traps are organized
on a d-dimensional lattice is slightly more involved, since a new time scaletq appears,
which is a wave-vector-dependent relaxation time. A schematic way of modelling the
interactions between the particles, reflecting the fact that when one particle moves the
potential energy seen by its neighbours changes, was investigated in section 4. The
conclusion regarding the existence of a dynamical transition was found to depend on the
shape of the effective diffusion constantD(E). In the case where the transition survives,
the role of this ‘interaction’ is irrelevant.

In conclusion, many of the observed features of glassy systems can be accounted for
within a picture of independent particles trapped in random potential wells, without any
obvious collective effects [4, 5, 12–15]. How deep is the link between this picture and
the mode-coupling theory is not yet clear. However, the MCT relies on the existence of
a true critical pointTc, with two important consequences which are beyond the grasp of
‘trap’ models: the strong link between theα and β regime and the critical behaviour of
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the plateau value inCeq(t) as
√

Tc − T [1]. These predictions are, however, hard to test
since the critical point is supposed to be blurred by ‘activated processes’. As suggested in
[9], a crucial test of MCT could be performed by working deep belowTc, where ‘activated
processes’ are frozen but where strong aging effects should appear.
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Appendix. Relaxation towards the equilibrium distribution in model (94)

In the caseD > 0, equation (94) is nonlinear and cannot be solved exactly. However, we
may introduce some approximations to study the relaxation at large time.

A1. Approximate description of the relaxation

To study the relaxation towards the equilibrium distributionPeq(E), we may set

P(E, t) = Peq(E) + η(E, t) (110)

into (94), linearize the corresponding equation in the perturbationη and replacePeq(E) by
the expressionPeq(E) ' ωeq(β) e+βEρ(E) which happens to be a very good approximation
except in the vicinity ofE = 0. We obtain finally

1

00

∂η

∂t
= −e−βEη(E, t)

+ρ(E)

∫ ∞

0
du e−βuη(u, t) + ωeq(β)D

[
ρ(E)

∂2η

∂2E
− ηρ ′′(E)

]
. (111)

We may look for the solution through its decomposition onto a relaxation spectrum

η(E, t) =
∫ ∞

0
dλ fλ(E) e−λ00t (112)

with the condition∫ ∞

0
dE fλ(E) = 0 (113)

to insure the normalization of the probability densityP(E, t) (110). The equation forfλ

(111)

−Dωeq(β)
d2fλ

d2E
+

[
Dωeq(β)

ρ ′′(E)

ρ(E)
+ e−βE − λ

ρ(E)

]
fλ(E) = Cλ (114)

where

Cλ =
∫ ∞

0
dλfλ(E) e−βE (115)

has to be supplemented by the boundary condition (95)[
ρ(E)

dfλ

dE
− fλ

dρ

dE

] ∣∣∣∣
E=0

= 0. (116)
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In fact, the self-consistency condition (115) is automatically satisfied oncefλ is a solution
of (114), (113) and (116).

Equations (114), (113) and (116) imply that

(λ − λ′)
∫ ∞

0

dE

ρ(E)
fλ(E)fλ′(E) = 0. (117)

The functionsfλ(E) including Peq(E) = f0(E) are, therefore, orthogonal to one another
with respect to the measure dE/ρ(E). One may choose to orthonormalize this set of
functions according to the scalar product∫ ∞

0

dE

ρ(E)
fλ(E)fλ′(E) = δ(λ − λ′). (118)

The development ofP(E, t) onto this basis then reads

P(E, t) = Peq(E) +
∫ ∞

0
dλ a(λ)fλ(E) e−λ00t (119)

where the coefficientsa(λ) are simply obtained through the scalar product with the initial
conditionP(E, t = 0)

a(λ) =
∫ ∞

0

dE

ρ(E)
fλ(E)P (E, 0). (120)

A2. Nature of the relaxation spectrum

To determine the relaxation spectrum, it is convenient to transform (118) into a usual scalar
product

δ(λ − λ′) =
∫ ∞

0

dE

ρ(E)
fλ(E)fλ′(E) =

∫ ∞

u0

du 9λ(u)9λ′(u) (121)

through the change of variable

E −→ u(E) =
∫ E

u0

dE′
√

ρ(E′)
(122)

or conversely

E(u) =
∫ u

0

dv

h(v)
where h(u) = 1√

ρ[E(u)]
(123)

and a change of functions

fλ(E) −→ 9λ(u) = fλ[E(u)]

(ρ[E(u)])
1
4

. (124)

The equation for the new function9λ(u) (114) is

−d29λ

d2u
+

[
V (u) + e−βE(u) − λ

Dωeq(β)

]
9λ(u) = Cλ

Dωeq(β) [h(u)]
3
2

(125)

where

V (u) = 15

4

(
h′(u)

h(u)

)2

− 3

2

h′′(u)

h(u)
(126)

has to be supplemented by the boundary condition atu0 = u(E = 0)[
d9λ

du
+ 3

2

h′(u)

h(u)
9λ

] ∣∣∣∣
u=u0

= 0 (127)
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and by the condition (113)∫ ∞

u0

du
9λ(u)

[h(u)]
3
2

= 0. (128)

To discuss the nature of the spectrum, the only important property of the potentialV (u) is
that

V (u) −→
u→∞ 0. (129)

This comes from the fact thatρ(E) presents a rapid enough decay asE → ∞ to be
integrable.

At infinite temperature (β = 0), the constantCλ (115) on the left-hand side of (125)
vanishes (113). The asymptotic form of equation (125) asu → ∞,

d29λ

d2u
= −

(
λ − 1

Dωeq(β)

)
9λ(u) (130)

admits two independent oscillatory solutions forλ > 1, and the boundary condition atu0

determines the suitable linear combination to be taken for9λ up to a normalization constant.
However, forλ < 1, only the exponentially damped solution is acceptable at infinity and
the boundary condition atu0 cannot be satisfied. So we finally obtain that the relaxation
spectrum at infinite temperature (β = 0) consists of a continuum above the gap00

P(E, t) = ρ(E) +
∫ ∞

1
dλ a(λ)fλ(E) e−λ00t (131)

to be compared with the previous result for the limiting caseD = 0 (9).
At finite temperature (β > 0), the asymptotic form of the homogeneous equation

corresponding to (125) in the limitu → ∞
d2χλ

d2u
= − λ

Dωeq(β)
χλ(u) (132)

admits always oscillatory solutions forλ > 0. The relaxation spectrum at finite temperature
(β > 0) consists, therefore, of a continuum starting fromλ = 0 (119). This will produce
an algebraic relaxation determined by the behaviour of the functionφλ in the limit λ → 0.

A3. Example of the exponential density of states

We may apply the previous general theory to the particular case of the exponential
distribution for ρ(E), for which there exists a stationary distribution in the domain of
high temperature,x ≡ β0/β > 1. The change of variables (122)

E −→ u(E) = u0 eβ0E/2 where u0 = 2

(β0)
3
2

(133)

and the functionh(u) (123)

h(u) = β0

2
u (134)

are simple enough to give an algebraic form to the potential involved in the inhomogeneous
Schr̈odinger equation (125) satisfied by the new function9λ(u):

−d29λ

d2u
+

[
15

4

1

u2
+ 1

Dωeq(β)

(u0

u

)2/x

− λ

Dωeq(β)

]
9λ(u) = Cλ

Dωeq(β)

(
2

β0u

)3
2

. (135)
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At infinite temperature (ωeq(β) = 1; x = ∞), the functionfλ(E) involved in the
decomposition (131) reads in terms of Bessel functionsJν andYν

fλ(E) = Nk [Y1(ku0)J2[ku(E)] − J1(ku0)Y2[ku(E)]] (136)

with k = √
(λ − 1)/D and

Nk = 1√
Dβ000

1√
J 2

1 (ku0) + Y 2
1 (ku0)

(137)

and (131) may be written with the notationλk = 1 + Dk2 as

P(E, t) = ρ(E) + 2D e−00t

∫ ∞

0
k dk a(λk)fλk

(E) e−D00k
2t . (138)

In the limit k → 0, the behavioursfλk
∝ k2 anda(λk) ∝ k2 for a generic initial condition

(see (120)) gives the asymptotic algebraic correction to the exponential e−00t

P (E, t) − ρ(E) ∝
t→∞

e−00t

(00t)3
(139)

to be compared with (9). The presence of the diffusion term in (94) representing the
interaction between particles thus tends to accelerate the relaxation in comparison to the
case (1) of independent particles.

References

[1] For reviews, see G̈otze W 1989Liquids, Freezing and Glass Transition(Les Houches) ed J P Hansen,
D Levesque and J Zinn-Justin (Amsterdam: North-Holland)

See also G̈otze W and Sj̈ogren L 1992Rep. Prog. Phys.55 241
[2] For a review, see the interesting series of papers 1995Science267 1924
[3] Vogel H 1921Z. Phys.22 645

Fulcher G S 1925J. Am. Ceram. Soc.6 339
[4] See the lucid papers of Bassler H 1987Phys. Rev. Lett.58 767

Richter R and Bassler H 1990J. Cond. Mat. Phys.2 2273 and references therein
[5] Dyre J C 1987Phys. Rev. Lett.58 792; 1995Phys. Rev.B 51 12 276
[6] For an enlightening introduction to the experimental controversy, see the series of comments Zeng X C,

Kivelson D and Tarjus G 1994Phys. Rev.E 50 1711
Dixon P K, Menon N and Nagel S R 1994Phys. Rev.E 50 1717
Cummins H Z and Li G 1994Phys. Rev.E 50 1720 and references therein
In particular Cummins H Z, Du W M, Fuchs M, Gotze W, Hildebrand S, Latz A, Li G and Tao N J 1993

Phys. Rev.E 47 4223
[7] Kirkpatrick T R, Thirumalai D and Wolynes P G 1989Phys. Rev.A 40 1045 and references therein
[8] Cugliandolo L and Kurchan J 1993Phys. Rev. Lett.71 173

Cugliandolo L and Le Doussal P 1996 Large time off-equilibrium dynamics of a particle diffusing in a
random potentialPhys. Rev.E 53 1525

Cugliandolo L, Le Doussal P and Kurchan J 1996Phys. Rev. Lett.76 2390
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[9] Bouchaud J P, Cugliandolo L, Kurchan J and Mézard M 1996 Mode coupling approximations, glass theory
and disordered systemsPhysica226A 243
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